Paper Reference(s) 66669/01 Edexcel GCE

Further Pure Mathematics FP3

Advanced/Advanced Subsidiary

Monday 24 June 2013 – Afternoon

Time: 1 hour 30 minutes

<u>Materials required for examination</u> Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for the parts of questions are shown in round brackets, e.g. (2). There are 8 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. 1. A hyperbola *H* has equation

$$\frac{x^2}{a^2} - \frac{y^2}{25} = 1$$
, where *a* is a positive constant.

The foci of *H* are at the points with coordinates (13, 0) and (-13, 0).

Find

- (a) the value of the constant a,
- (b) the equations of the directrices of H.

2. (*a*) Find

$$\frac{1}{\sqrt{(4x^2+9)}} \,\mathrm{d}x$$

(b) Use your answer to part (a) to find the exact value of

$$\int_{-3}^{3} \frac{1}{\sqrt{(4x^2+9)}} \, \mathrm{d}x$$

giving your answer in the form $k \ln(a + b \sqrt{5})$, where a and b are integers and k is a constant.

(3)

(3)

(3)

(2)

3. The curve with parametric equations

4.

$$x = \cosh 2\theta, \quad y = 4 \sinh \theta, \quad 0 \le \theta \le 1$$

is rotated through 2π radians about the *x*-axis.

Show that the area of the surface generated is $\lambda(\cosh^3 \alpha - 1)$, where $\alpha = 1$ and λ is a constant to be found.

(7)

Figure 1 shows part of the curve with equation

$$y = 40 \operatorname{arcosh} x - 9x, \qquad x \ge 1$$

Use calculus to find the exact coordinates of the turning point of the curve, giving your answer in the form $\left(\frac{p}{q}, r \ln 3 + s\right)$ where p, q, r and s are integers.

(7)

5. The matrix **M** is given by

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & a \\ 2 & b & c \\ -1 & 0 & 1 \end{pmatrix}, \text{ where } a, b \text{ and } c \text{ are constants.}$$

(a) Given that $\mathbf{j} + \mathbf{k}$ and $\mathbf{i} - \mathbf{k}$ are two of the eigenvectors of \mathbf{M} ,

find

- (i) the values of a, b and c,
- (ii) the eigenvalues which correspond to the two given eigenvectors.

(8)

(b) The matrix \mathbf{P} is given by

$$\mathbf{P} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & d \\ -1 & 0 & 1 \end{pmatrix}, \text{ where } d \text{ is constant, } d \neq -1$$

Find

- (i) the determinant of \mathbf{P} in terms of d,
- (ii) the matrix \mathbf{P}^{-1} in terms of *d*.

(5)

6. Given that

$$I_n = \int_0^4 x^n \sqrt{(16 - x^2)} dx, \qquad n \ge 0,$$

(*a*) prove that, for $n \ge 2$,

$$(n+2)I_n = 16(n-1)I_{n-2}$$

(b) Hence, showing each step of your working, find the exact value of I_5 .

(5)

(6)

7. The ellipse *E* has equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad a > b > 0$$

The line *l* is a normal to *E* at a point $P(a\cos\theta, b\sin\theta)$, $0 < \theta < \frac{\pi}{2}$

(a) Using calculus, show that an equation for l is

$$ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$$

The line *l* meets the *x*-axis at *A* and the *y*-axis at *B*.

- (b) Show that the area of the triangle OAB, where O is the origin, may be written as $k \sin 2\theta$, giving the value of the constant k in terms of a and b.
- (c) Find, in terms of a and b, the exact coordinates of the point P, for which the area of the triangle OAB is a maximum.

8. The plane Π_1 has vector equation

$$\mathbf{r}.(\mathbf{3i}-\mathbf{4j}+\mathbf{2k})=\mathbf{5}$$

(a) Find the perpendicular distance from the point (6, 2, 12) to the plane Π_1 .

(3)

(5)

(4)

(3)

The plane Π_2 has vector equation

 $\mathbf{r} = \lambda(2\mathbf{i} + \mathbf{j} + 5\mathbf{k}) + \mu(\mathbf{i} - \mathbf{j} - 2\mathbf{k})$, where λ and μ are scalar parameters.

- (b) Find the acute angle between Π_1 and Π_2 giving your answer to the nearest degree.
- (c) Find an equation of the line of intersection of the two planes in the form $\mathbf{r} \times \mathbf{a} = \mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors.

(6)

(5)

TOTAL FOR PAPER: 75 MARKS

END

Question Number	Scheme		Marks
	Mark (a) a	nd (b) together	
1. (a) & (b)	$ae = 13$ and $a^2(e^2 - 1) = 25$	Sight of both of these (can be implied by their work) (allow \pm ae $= \pm 13$ or \pm ae $= 13$ or ae $= \pm 13$)	B1
	Solves to obtain $a^2 = \dots$ or $a = \dots$	Eliminates <i>e</i> to reach $a^2 = \dots$ or $a = \dots$	M1
	<i>a</i> = 12	Cao (not ± 12) unless -12 is rejected	A1
	<i>e</i> = 13/ "12"	Uses their <i>a</i> to find <i>e</i> or finds <i>e</i> by eliminating <i>a</i> (Ignore \pm here) (Can be implied by a correct answer)	M1
	$x = (\pm)\frac{a}{e}, = \pm \frac{144}{13}$	M1: $(x =)(\pm)\frac{a}{e}$ \pm not needed for this mark nor is x and even allow $y = (\pm)\frac{a}{e}$ here – just look for use of $\frac{a}{e}$ with numerical a and e. A1: $x = \pm \frac{144}{13}$ oe but must be an equation (Do not allow $x = \pm \frac{12}{13/2}$)	M1, A1
			Total 6
	If they use the eccentricity equal to allow	uation for the ellipse $(b^2=a^2(1-e^2))$ the M's	

Question Number	Scheme	Marks
2. (a)	$k \operatorname{arsinh}\left(\frac{2x}{3}\right)(+c)$ or $k \ln[px + \sqrt{(p^2x^2 + \frac{9}{4}p^2)}](+c)$	M1
	$\frac{1}{2} \operatorname{arsinh}\left(\frac{2x}{3}\right) (+c) \text{or} \frac{1}{2} \ln[px + \sqrt{(p^2 x^2 + \frac{9}{4}p^2)}] (+c)$	A1
		(2)
(b)	So: $\frac{1}{2}\ln\left[6+\sqrt{45}\right] - \frac{1}{2}\ln\left[-6+\sqrt{45}\right] = \frac{1}{2}\ln\left[\frac{6+\sqrt{45}}{-6+\sqrt{45}}\right]$	M1
	Uses correct limits <u>and</u> combines logs	
	$= \frac{1}{2} \ln \left[\frac{6 + \sqrt{45}}{-6 + \sqrt{45}} \right] \left[\frac{6 + \sqrt{45}}{6 + \sqrt{45}} \right] = \frac{1}{2} \ln \left[\frac{(6 + \sqrt{45})^2}{9} \right]$	M1
	Correct method to rationalise denominator (may be implied) Method must be clear if answer does not follow their fraction	
	$= \ln[2 + \sqrt{5}]$ (or $\frac{1}{2}\ln[9 + 4\sqrt{5}]$)	Alcso
	Note that the last 3 marks can be scored without the need to rationalise e.g.	
	$2 \times \frac{1}{2} \left[\ln[2x + \sqrt{(4x^2 + 9)}] \right]_0^3 = \ln(6 + \sqrt{45}) - \ln 3 = \ln(\frac{6 + \sqrt{45}}{3})$	
	M1: Uses the limits 0 and 3 and doubles	
	M1: Combines Logs A1: $\ln[2 + \sqrt{5}]$ on	
	A1. $\operatorname{II}[2 - \sqrt{3}]$ 00	(3)
		Total 5
Alternative for (a)	$x = \frac{3}{2} \sinh u \Rightarrow \int \frac{1}{\sqrt{9 \sinh^2 u + 9}} \cdot \frac{3}{2} \cosh u du = k \operatorname{arsinh}\left(\frac{2x}{3}\right) (+c)$	M1
	$\frac{1}{2} \operatorname{arsinh}\left(\frac{2x}{3}\right) (+c)$	A1
Alternative for (b)	$\left[\frac{1}{2}\operatorname{arsinh}\left(\frac{2x}{3}\right)\right]_{-3}^{3} = \frac{1}{2}\operatorname{arsinh} 2 -\frac{1}{2}\operatorname{arsinh} -2$	
	$\frac{1}{2}\ln(2+\sqrt{5}) - \frac{1}{2}\ln(\sqrt{5}-2) = \frac{1}{2}\ln(\frac{2+\sqrt{5}}{\sqrt{5}-2})$	M1
	Uses correct limits <u>and</u> combines logs	
	$= \frac{1}{2}\ln(\frac{2+\sqrt{5}}{\sqrt{5}-2},\frac{\sqrt{5}+2}{\sqrt{5}+2}) = \frac{1}{2}\ln(\frac{2\sqrt{5}+4+5+2\sqrt{5}}{5-4})$	M1
	Correct method to rationalise denominator (may be implied)	
	Niethod must be clear if answer does not follow their fraction 1	
	$=\frac{1}{2}\ln[9+4\sqrt{5}]$	A1cso

Question Number	Sche	eme		Marks
3.	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) = 2\sinh 2\theta$ Or equivalen	and $(\frac{d}{d})$	$\left(\frac{y}{\theta}\right) = 4\cosh\theta$ erivatives	B1
	$A = (2\pi) \int 4\sinh\theta \sqrt{2\sinh 2\theta''^2 + 4\cosh\theta''^2} d\theta$			
	or $A = (2\pi) \int 4\sinh\theta \sqrt{\left(1 + \left(\frac{"4\cosh\theta"}{"2\sinh2\theta"}\right)^2 \cdot 2\sinh2\theta \mathrm{d}\theta}\right)^2} \cdot 2\sinh2\theta \mathrm{d}\theta$		M1	
	Use of correct formula including r	eplacing d	Lx with " $2\sinh 2\theta$ " d θ if	
	chain rule used. Allow the	e omission	of the 2π here.	
	$A = 32\pi \int \sinh A = 32\pi \int (\sinh A) \sin A$	$\theta \cosh^2 \theta$ $\theta + \sinh^3 \theta$	d <i>θ</i> ?)d <i>θ</i>	B1
	<u>Completely correct</u> expression for This mark may be recovered la	r A with tl ter if the 2	ne square root removed 2π is introduced later	
	$A = \frac{32\pi}{3} \left[\cosh^3 \theta \right]_0^1$	M1: Vali correct e of a corre depender A1: Corr	d attempt to integrate a expression or a multiple ect expression – nt on the first M1 ect expression	dM1A1
	$=\frac{32\pi}{3}\left[\cosh^3 1-1\right]$	M1: Uses correctly previous A1: Cao	s the limits 0 and 1 . Dependent on both M's and cso (no errors seen)	ddM1A1
				(7)
	Example Alternative Inte	egration for	or last 4 marks	
	$\int (\sinh\theta + \frac{1}{4}\sinh 3\theta - \frac{3}{4}\sinh\theta)$	$d\theta = \frac{1}{4} \int ($	$\sin \theta + \sin \theta \partial \theta$ $\sin \theta + \sin \theta \partial \theta$	
	$=\frac{1}{4}\cosh\theta$ +	$\frac{1}{12}$ cosh 36		dM1A1
	dM1: $\int \sinh\theta \cosh^2\theta$	$d\theta = p\cos^{12}$	$h\theta + q\cosh 3\theta$	
	A1 : $32\pi \left[\frac{1}{4} \cosh \theta + \frac{1}{12} \cosh 3\theta \right]$			
	$A = 8\pi \left[\cosh \theta + \frac{1}{3} \cosh 3\theta \right]_0^1$ $= 8\pi \left(\cosh 1 + \frac{1}{3} \cosh 3 - \cosh 0 - \frac{1}{3} \cosh 3 \right)_0^1$	cosh 0)	M1: Uses the limits 0 and 1 correctly. Dependent on both previous M's	ddM1A1
	$\frac{32\pi}{3} \left[\cosh^3 1 - 1 \right]$		A1: Cao	

Question Number	Scheme		Marks
3.	Alternative Cart	tesian Approach	
	$x = 1 + \frac{y^2}{8}$	Any correct Cartesian equation	B1
	$\frac{dx}{dy} = \frac{y}{4} \text{or} \frac{dy}{dx} = \frac{\sqrt{2}}{(x-1)^{\frac{1}{2}}}$	Correct Derivative	B1
	$A = \int 2\pi \cdot y \sqrt{\left(1 + \left(\frac{y}{4}\right)^2\right)} dy \text{ or } A = \int 2\pi \cdot \sqrt{8} (x - 1)^{\frac{1}{2}} \sqrt{\left(1 + \left(\frac{2}{x - 1}\right)\right)} dx$		M1
	Use of a corr		
	$A = 2\pi \times \frac{2}{3} \times 8 \left(1 + \frac{y^2}{16} \right)^{\frac{3}{2}} \text{ or } A = \frac{4\pi\sqrt{8}}{3} x + 1^{\frac{3}{2}}$		dM1 A1
	M1: Convincing attempt to integrate a relevant expression – dependent on the first M1 but allow the omission of 2π		
	A1: Completely corr	ect expression for A	
	$A = 2\pi \times \frac{2}{3} \times 8 \ 1 + \sinh^2 1^{\frac{3}{2}} - 2\pi \times \frac{2}{3} \times 8 \text{ or } 2\pi \times \frac{2}{3} \times \sqrt{8} \ 1 + \cosh 2^{\frac{3}{2}} - \frac{32\pi}{3}$		ddM1
	Correct use of limits $(0 \rightarrow 4\sinh 1 \text{ for y or } 1 \rightarrow \cosh 2 \text{ for } x)$		
	Use $1 + \sinh^2 1 = \cosh^2 1$	Use $\cosh 2 = 2\cosh^2 1 - 1$	
	to give $\frac{32\pi}{3} \left[\cosh^3 1 - 1 \right]$	to give $\frac{32\pi}{3} \left[\cosh^3 1 - 1 \right]$	A1

Question Number	Sch	eme	Marks
4.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40}{\sqrt{(x^2 - 1)}} - 9$	M1: $\frac{dy}{dx} = \frac{p}{\sqrt{(x^2 - 1)}} - q$ A1: Cao	M1 A1
	Put $\frac{dy}{dx} = 0$ and obtain $x^2 = \dots$ (Allow sign errors only)	e.g. $\left(\frac{1681}{81}\right)$	dM1
	$x = \frac{41}{9}$	M1: Square root A1: $x = \frac{41}{9}$ or exact equivalent $(\text{not} \pm \frac{41}{9})$	M1 A1
	$y = 40\ln\{(\frac{41}{9}) + \sqrt{(\frac{41}{9})^2 - 1}\} - "41"$	Substitutes $x = "\frac{41}{9}"$ into the curve and uses the logarithmic form of arcosh	M1
	So $y = 80 \ln 3 - 41$	Сао	A1
			Total 7

Question Number	Sch	eme	Marks	
5. (a) (i)&(ii)	$\begin{pmatrix} 1 & 1 & a \\ 2 & b & c \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+a \\ b+c \\ 1 \end{pmatrix} =$	= $\lambda_1 \begin{pmatrix} 0\\1\\1 \end{pmatrix}$, and so $a = -1$, $\lambda_1 = 1$	M1, A1, A1	
	M1: Multiplies out matrix with fi λ_1 times eigenvector. A1 : Dedu	rst eigenvector and puts equal to uces $a = -1$. A1: Deduces $\lambda_1 = 1$		
	$ \begin{pmatrix} 1 & 1 & a \\ 2 & b & c \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1-a \\ 2-c \\ -2 \end{pmatrix} = \lambda_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \text{ and so } c = 2, \ \lambda_2 = 2 $			
	M1: Multiplies out matrix with sec	cond eigenvector and puts equal to		
	λ_2 times eigenvector. A1: Dedu	uces $c = 2$. A1: Deduces $\lambda_2 = 2$		
		M1: Uses $b + c = \lambda_1$ with their λ_1 to		
		find a value for <i>b</i> (They must		
	$b + c = \lambda_1$ so $b = -1$	have an equation in b and c from the first eigenvector to score this	M1A1	
		mark)		
		A1: <i>b</i> = -1		
	$(a = -1, b = -1, c = 2, \lambda_1 = 1, \lambda_2 = 2)$		(8)	
(b)(i)	$\det \mathbf{P} = -d - 1$	Allow $1 - d - 2$ or $1 - (2 + d)$ A correct (possibly un-simplified) determinant	B1	
(ii)		$\begin{pmatrix} 1 & d+2 & 1 \end{pmatrix}$		
	$\mathbf{P}^{T} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ or n	ninors 1 1 1 or		
	$\begin{pmatrix} 0 & d & 1 \end{pmatrix}$	d d -1	D1	
	(1 -2-d	1	BI	
	cofactors -1 1	-1 a correct first step		
	d -d	-1		
		M1: Identifiable full attempt at inverse including reciprocal of determinant Could be indicated		
	$\begin{pmatrix} 1 & -1 & d \end{pmatrix}$	by at least 6 correct elements.		
	$\frac{1}{-d-1}$ -2-d 1 -d	A1: Two rows or two columns	M1 A1 A1	
		BUT M0A1A0 or M0A1A1 is		
		not possible		
		A1: Fully correct inverse		
			(5) Total 13	

Question Number	Sch	neme	Marks
6(a)	$I_n = \int_0^4 \frac{x^{n-1} \times x(16 - x^2)^{\frac{1}{2}} dx}{x^{n-1} \times x(16 - x^2)^{\frac{1}{2}}} dx$	M1: Obtains $x(16-x^2)^{\frac{1}{2}}$ prior to integration A1: Correct underlined expression (can be implied by their integration)	M1A1
	$I_n = \left[-\frac{1}{3} x^{n-1} (16 - x^2) \right]$	$\frac{3}{2} \int_{0}^{4} + \frac{n-1}{3} \int_{0}^{4} x^{n-2} (16 - x^{2})^{\frac{3}{2}} dx$	dM1
	dM1: Parts in the co	rrect direction (Ignore limits)	
	$\therefore I_n = \frac{n-1}{3} \int_0^4 x^{n-2} dx^{n-2} dx^{n$	$(16-x^2)(16-x^2)^{\frac{1}{2}}dx$	
	i.e. $I_n = \frac{16(n-1)}{3}I_{n-2} - \frac{n-1}{3}I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+\frac{n-1}{3}) = \frac{16(n-1)}{3}I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2}*$	Printed answer with no errors	A1*cso
			(6)
Way 2	$\int_{0}^{4} x^{n} (16 - x^{2})^{\frac{1}{2}} dx = \int_{0}^{4} x^{n} \frac{(16 - x^{2})}{(16 - x^{2})^{\frac{1}{2}}} dx = \int_{0}^{4} \frac{16x^{n}}{(16 - x^{2})^{\frac{1}{2}}} dx - \int_{0}^{4} \frac{x^{n+2}}{(16 - x^{2})^{\frac{1}{2}}} dx$		
	$= \int_{0}^{4} 16x^{n-1} \times x(16-x^{2})^{-\frac{1}{2}} dx - \int_{0}^{4} x^{n+1} \times x(16-x^{2})^{-\frac{1}{2}} dx$		M1A1
	M1: Obtains $x(16-x^2)^{-\frac{1}{2}}$ prior to	integration A1: Correct expressions	
	$= \left[-16x^{n-1}(16-x^2)^{\frac{1}{2}} \right]_0^4 + 16(n-1) \int_0^4 x^{n-2}(16-x^2)^{\frac{1}{2}} dx$ $-\left(\left[-x^{n+1}(16-x^2)^{\frac{1}{2}} \right]_0^4 + (n+1) \int_0^4 x^n(16-x^2)^{\frac{1}{2}} dx \right]$		dM1
	dM1: Parts in the correct di	rection on both (Ignore limits)	
	$I_n = 16(n-1)I_{n-2} - (n+1)I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+n+1) = 16(n-1)I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2}*$	Printed answer with no errors	A1*
Way 3	$\int_{0}^{4} x^{n} (16 - x^{2})^{\frac{1}{2}} dx = \int_{0}^{4} x \times x^{n-1} \frac{(16 - x^{2})^{\frac{1}{2}}}{(16 - x^{2})^{\frac{1}{2}}} dx$	$\frac{x^{2}}{x^{2}} dx = \frac{M1: \text{Obtains } x(16 - x^{2})^{-\frac{1}{2}}}{\text{prior to integration}}$ A1: Correct expression	M1A1
	$= \left[-x^{n-1}(16-x^2)(16-x^2)^{\frac{1}{2}} \right]_0^4 + \int_0^4 (16(n-1)x^{n-2}-(n+1)x^n)(16-x^2)^{\frac{1}{2}} dx$		dM1
	dM1: Parts in the co	rrect direction (Ignore limits)	
	$I_n = 16(n-1)I_{n-2} - (n+1)I_n$	Manipulates to obtain at least one integral in terms of I_n or I_{n-2} on the rhs.	M1
	$I_n(1+n+1) = 16(n-1)I_{n-2}$	Collects terms in I_n from both sides	M1
	$(n+2)I_n = 16(n-1)I_{n-2}*$	Printed answer with no errors	A1*

Question Number	Sche	eme		Marks
(b)	$I_1 = \int_0^4 x \sqrt{(16 - x^2)} dx = \left[-\frac{1}{3} (16 - x^2)^{\frac{3}{2}} \right]$	$\begin{bmatrix} 4 \\ -0 \end{bmatrix} = \frac{64}{3}$	M1: Correct integration to find I_1 A1: $\frac{64}{2}$ or equivalent	M1 A1
			(May be implied by a later work – they are not asked explicitly for I_1)	
	$\frac{64}{3}$ must come from	om correc	t work	
	Using x =	$-4\sin\theta$:		
	$I_{1} = \int_{0}^{\frac{\pi}{2}} 4\sin\theta \sqrt{(16 - 16\sin^{2}\theta)} 4$	$\cos\theta d\theta =$	$= \int_0^{\frac{\pi}{2}} 64 \sin \theta \cos^2 \theta \mathrm{d} \theta$	
	$=\left[-\frac{64}{3}\right]$	$\cos^3 \theta \bigg]_0^{\frac{\pi}{2}}$		
	M1: A <u>complete</u> substitution and at	tempt to s	substitute <u>changed</u> limits	
	A1: $\frac{64}{3}$ or ϵ	equivalent	t	
	$I_5 = \frac{64}{7}I_3, I_3 = \frac{32}{5}I_1$	Applies formula terms of terms of (Can be	to apply reduction twice. First M1 for I_5 in I_3 , second M1 for I_3 in I_1 implied)	M1, M1
	$I_5 = \frac{131072}{105}$	Any <u>exa</u> on all pr been sco	nct equivalent (Depends revious marks having pred)	A1
				(5)
				Total 11

Question Number	Scher	me	Marks
7(a)	$\left(\frac{dx}{d\theta} = -a\sin\theta \text{ and } \frac{dy}{d\theta} = b\right)$	$b\cos\theta$) so $\frac{dy}{dx} = \frac{b\cos\theta}{-a\sin\theta}$	M1 A1
	M1: Differentiates both <i>x</i> ar	M1: Differentiates both <i>x</i> and <i>y</i> and divides correctly	
	A1: Fully corre	ect derivative	
	Alterna	itive:	
	M1: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Longrightarrow \frac{2x}{a^2} + \frac{2yy'}{b^2} =$	$0 \Rightarrow y' = -\frac{b^2 x}{a^2 y} = -\frac{b^2 a \cos \theta}{a^2 b \sin \theta}$	
	Differentiates implicitly ar	nd substitutes for x and y	
	$\Delta 1: - b \cos \theta$		
		$a\sin heta$	
	Normal has gradient $\frac{a\sin\theta}{b\cos\theta}or\frac{a^2y}{b^2x}$	Correct perpendicular gradient rule	M1
	$(y - b\sin\theta) = \frac{a\sin\theta}{b\cos\theta}(x - a\cos\theta)$	Correct straight line method using a 'changed' gradient which is a function of θ	M1
	If $y = mx + c$ is used not	eed to find c for M1	
	$ax\sin\theta - by\cos\theta = (a^2)$	$(a^2 - b^2)\sin\theta\cos\theta *$	A1
	Fully correct completion	on to printed answer	
			(5)
(b)	$x = \frac{(a^2 - b^2)\cos\theta}{a}$	Allow un-simplified	B1
	$y = -\frac{(a^2 - b^2)\sin\theta}{b}$	Allow un-simplified	B1
	$\left(=\frac{1}{2}\frac{(a^2-b^2)^2\cos\theta\sin\theta}{ab}\right)$	$= \frac{1}{4} \frac{(a^2 - b^2)^2}{ab} \sin 2\theta$	M1A1
	M1: Area of triangle is $\frac{1}{2}$ " <i>OA</i> "×" <i>OE</i>	" and uses double angle formula	
	corre	ctly	
	A1: Correct expression for t	he area (must be positive)	
	Marine and relation in 20, 1 and		(4)
(0)	$\theta = \frac{\pi}{4} \text{ or } 45$	Correct value for θ (may be implied by correct coordinates)	B1
	So the point P is at $\left(\frac{a}{\overline{a}}, \frac{b}{\overline{a}}\right)$ oe	M1: Substitutes their value of θ where	M1 A1
	$\sqrt{2}$	$0 < \theta < \frac{\pi}{2}$ or $0 < \theta < 90$ into	
	$\left(a\cos\frac{\pi}{4}, b\sin\frac{\pi}{4}\right)$ scores B1M1A0	their parametric coordinates	
		A1: Correct exact coordinates	
	Mark part (c) in	ndependently	
			(3)
			Total 12

Question Number	Sche	eme	Marks
8 (a)	(6i+2j+12k).(3i-4j+2k) = 34	Attempt scalar product	M1
	$\frac{(6\mathbf{i}+2\mathbf{j}+12\mathbf{k}).(3\mathbf{i}-4\mathbf{j}+2\mathbf{k})-5}{\sqrt{3^2+4^2+2^2}}$	Use of correct formula	M1
	$\sqrt{29} (not - \sqrt{29})$	Correct distance (Allow $29/\sqrt{29}$)	A1
			(3)
(a) Way 2	$\mathbf{r} = (\mathbf{6i} + 2\mathbf{j} + 12\mathbf{k})$ $\therefore \ 6 + 3\lambda \ 3 + \ 2 - 4\lambda$	$+\lambda(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k})$ -4 + 12+2\lambda 2=5	M1
	Substitutes the parametric coordin	ates of the line through (6, 2, 12)	
	perpendicular to the plane i	nto the cartesian equation.	
	$\lambda = -1 \Longrightarrow 3, 6, 10 \text{ or } -3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$	Solves for λ to obtain the required point or vector.	M1
	$\sqrt{29}$	Correct distance	A1
(a) Way 3	Parallel plane containing (6, 2, 12) is $\mathbf{r}.(3\mathbf{i}-4\mathbf{j}+2\mathbf{k}) = 34$	Origin to this plane is $\frac{34}{\sqrt{34}}$	M1
	$\Rightarrow \frac{\mathbf{r}.(3\mathbf{I} - 4\mathbf{J} + 2\mathbf{K})}{\sqrt{29}} = \frac{34}{\sqrt{29}}$	√29	
	$\Rightarrow \frac{\mathbf{r}.(3\mathbf{i}-4\mathbf{j}+2\mathbf{k})}{\sqrt{29}} = \frac{5}{\sqrt{29}}$	Origin to plane is $\frac{5}{\sqrt{29}}$	M1
	$\frac{34}{\sqrt{29}} - \frac{5}{\sqrt{29}} = \sqrt{29}$	Correct distance	A1
(b) For a cross product, if	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 5 \end{vmatrix} = \begin{pmatrix} 3 \\ 9 \end{pmatrix}$	M1: Attempts $(2\mathbf{i}+1\mathbf{j}+5\mathbf{k}) \times (\mathbf{i}-\mathbf{j}-2\mathbf{k})$	M1A1
the method is	1 - 1 - 2 (-3)	A1: Any multiple of $\mathbf{i} + 3\mathbf{j} - \mathbf{k}$	
unclear, 2 out of 3 components	$(\cos\theta) = \frac{(3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}).(\mathbf{i})}{\sqrt{3^2 + 4^2 + 2^2}\sqrt{1^2}}$	$\frac{+3j \cdot k}{+3^2 + 1^2} \left(=\frac{-11}{\sqrt{29}\sqrt{11}}\right)$	M1
should be	Attempts scalar product of norm	al vectors including magnitudes	
correct for M1	52	Obtains angle using arccos (dependent on previous M1)	dM1 A1
	Do not isw and mark the final ans	wer e.g. $90 - 52 = 38$ loses the A1	(5)
(c)	i j k (2	M1: Attempt cross product of	
	$\begin{vmatrix} 1 & 3 & -1 \\ 2 & 4 & 2 \end{vmatrix} = -5$	A1: Correct vector	M1A1
	$x = 0: (0, \frac{5}{2}, \frac{15}{2}), y = 0: (1)$	$, 0, 1), z = 0: (\frac{15}{13}, \frac{-5}{13}, 0)$	M1A1
	M1: Valid attempt at a point on both planes. A1: Correct coordinates		
	$r \times (-2i + 5j + 13k) = -5i - 15j + 5k$	M1: $\mathbf{r} \times dir = pos.vector \times dir$ (This way round)	M1A1
		A1: Correct equation	
			(6)

Question Number	Schen	ne	Marks
(c) Way 2	" $x + 3y - z = 0$ " and $3x - 4y + 2z = 5$ eliminate <i>x</i> , or <i>y</i> or <i>z</i> and substitutes ba terms of th	5 uses their cartesian form of and ck to obtain two of the variables in e third	M1
	$(x = 1 - \frac{2}{5}y \text{ and } z = 1 + \frac{13}{5}y) \text{ or } (z = \frac{5 - 5x}{2} \text{ and } z = \frac{15 - 13x}{2})$	$y = \frac{5z - 5}{13}$ and $x = \frac{15 - 2z}{13}$) or	A1
	Cartesian Eq $x = \frac{y - \frac{5}{2}}{-\frac{5}{2}} = \frac{z - \frac{15}{2}}{-\frac{13}{2}} \text{ or } \frac{x - 1}{-\frac{2}{5}} = y =$	Putations: $= \frac{z-1}{\frac{13}{5}} \text{ or } \frac{x-\frac{15}{13}}{-\frac{2}{13}} = \frac{y+\frac{5}{13}}{\frac{5}{13}} = z$	
	Points and Directions: Directions: $(0, \frac{5}{2}, \frac{15}{2}), \mathbf{i} - \frac{5}{2}\mathbf{j} - \frac{13}{2}\mathbf{k}$ or $(1, 0, 1), -\frac{2}{5}\mathbf{i} + \mathbf{j} + $	tion can be any multiple + $\frac{13}{5}$ k or $(\frac{15}{13}, -\frac{5}{13}, 0), -\frac{2}{13}$ i + $\frac{5}{13}$ j + k	M1 A1
	M1:Uses their Cartesian equations directi A1: Correct point and direction – it n i.e. look for the correct number	correctly to obtain a point and on nay not be clear which is which – s either as points or vectors	
	Equation of line in required form: e.g. $\mathbf{r} \times (-2\mathbf{i} + 5\mathbf{j} + 13\mathbf{k}) = -5\mathbf{i} - 15\mathbf{j} + 5\mathbf{k}$ Or Equivalent		M1 A1
			(6)
(c) Way 3	$\begin{pmatrix} 2\lambda + \mu \\ \lambda - \mu \\ 5\lambda - 2\mu \end{pmatrix}, \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = 5 \Longrightarrow 12\lambda + 3\mu = 5$	M1: Substitutes parametric form of \prod_2 into the vector equation of \prod_1 A1: Correct equation	M1A1
	$\mu = \frac{5}{3}, \lambda = 0$ gives $(\frac{5}{3}, -\frac{5}{3}, \frac{10}{3})$	M1: Finds 2 points and direction	
	$\mu = 0, \lambda = \frac{5}{12} \text{ gives} \left(\frac{5}{6}, \frac{5}{12}, \frac{25}{12}\right)$ Direction $\begin{pmatrix} -2\\5\\13 \end{pmatrix}$	A1: Correct coordinates and direction	M1A1
	Equation of line in required form: e.g. $\mathbf{r} \times (-2\mathbf{i} + 5\mathbf{j} + 13\mathbf{k}) = -5\mathbf{i} - 15\mathbf{j} + 5\mathbf{k}$ Or Equivalent		M1A1
	Do not allow 'mixed' methods – mark the best single attempt NB for checking, a general point on the line will be of the form: $(1 - 2\lambda, 5\lambda, 1 + 13\lambda)$		-